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Updated lecture notes from Lecture #1 and new notes for Lecture

#2 are available

e Recording for Lecture #1 is available

e https://jamboard.google.com/ is a useful tool for working on
problems together
e Slack channel on SQA Slack for the class - let me know if you

weren't added
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Linear algebra
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A d-dimensional Hilbert space H is a vector space equipped with an ,.\OV

innemproduict: Let {e;}9" ' be the computational(basisy where e}, is a
\ column vector of zeros except a ‘1" at the (i + 1)-th entry. Any vector

v € H can be decomposed into basis vectors e; as
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for some complex number @ € €. The inner product (or dot product)
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of two vectors u and v in the same basis in H is defined as

d—1
u-v:uTv:Zu;"v,-, (2)
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where(§ denotes transpose and conjugate. % 60“&“&"‘*3
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Denote/(|i) = ej and write v as |v):

v) = vili). (3)
The inner product
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Vector space basis

{|i)} set of mutually orthogonal normalized vectors.

For a unitary operator U, {U |i)} will be also mutually orthogonal and

normalized. P (]‘;7 = e(
e U AN
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Linear maps

L(AU;)'-'- /U’,|
L(Aq)= Oy,
L AL,"\'Q\\M)_\: Tyt & 47y,
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Example: Matrix multiplication



Linear operators

Given an linear operator L, there is an equivalent matrix representation

n the basis spanned by {]i)(k]}:
4 1 Jii o

where L; , = [i|L]k) (J‘L"L) 2 L‘r<&|IXKIQ7 LJZ

An linear operator H € E(?—[) is called Hermltlan iff HT = H. For a
Hermitian matrix H, the spectral theorem states that there exists an

orthonormal basis {|v;)} and real numbers {)\;} € R so that
H=>Y i)l (6)

Equivalently, {\;} and {|v;)} are known as eigenvalues and eigenvectors

of H, respectively.



Exercise

Verify that Pauli X is a Hermitian operator and compute its eigenvalues

and eigenvectors.
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Tensor product of Hilbert spaces

Br. A%,

Given two vectors |u) € Ha and |v) € Hp, the tensor product ‘®" of

them is |lé7
da—1dg—1
W@ |v)=>" > uwyli) @), (7)
i=0 j=0

a vector of dadg-dimension. If {|iYa} and {|j)g} are orthonormal bases

in Ha and Hpg, respectively, then {|Na® |j)g}, i € {0,--- ,da— 1} and

j€{0,---,dg — 1}, forms an orthonormal basis in H4 ® Hpg. The inner
product on the space Ha ® Hpg is defined by

conkusiug

notoON=  ((urla © (@l (vi)a © |4)8) = (u|va) als). (8)



Tensor product for operators

Linear operators in L(H):

)“]} da—1 dg—1
LoM = (Z L,-,ji><j) ® (Z Mk,£k><€=>

[/ i,j=0 k,6=0
—1dg—
y/\ Z Z Li iMiceliy (\@\k% (9)
i,j=0 k,£=0
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Trace

el

w5 (1
The trace maps is defined as (q \

TR = (k) =5 (@ (10)
3>t
From linearity, the trace of an operator L is

d—1
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e Show that Tr A is independent of the basis of A.

w21 <ilL ML= Zmlupgm\o
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T : L/

= 3 <MLL = Te(fL)
Tr(ML)3 E;Mi;j_;.' \,Za__é, A =

T (Lm)
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e Cyclic property: Show that Tr LM = Tr ML.
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A generalization of a trace. Partial trace maps an operator to a

lower-dimensional operator. Formally, partial trace

Tra : E(Hag) <> L(Hp) is defined by

=UlD|k) (tls = 0ilk){{]s- (12)

For a composite system on tHe space Ha ® Hpg, Tra gives trace only over
the subsystem on H 4 and rgmains subsystem H 4 intact. We often say

that we "trace-over A" .

T\'fb
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Quantum states

Use the ket notation |-) to denote a column vector of length one, e.g.,

[9) = : (13)
and use the bra notation (-| to denote the hermitian conjugate of |-):

Wl=(a g ). (14)

An alternative representation of a quantum state is the density matrix.

For pure states:

oy = [¥) (Y| (15)

{I’WV l"l"'j 40)

(ONS
14

loaso S



Joint quantum state

"WA \$)

Given |¢)a€ Ha and ﬁ>8 € Hp, the joint quantum state is
() as = W) a®|d)s € H=Ha® Hs.

If one of the subsyst¥ms, say H 4, is lost from |p)ag, the residue

quantum state can be\expressed as

[0}l = Tralp){epl. (16)

) [T aerersd poe Trg (@IS WX P10
|¢) (¢ might not have to be pPurg,
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Exercise

TVP«Q“’X;“*B\ = Wbé QQB
Ra® 3((5

Let ‘¢>AB = %(|O>A (129 |O>B -+ |1>A® ‘1>B) Compute TI’A(|¢><¢|AB) and

Trg(|®)(®|as). Discuss whether the result could be a pure state (no
need to prove it). NMIW\K‘(% W\\‘XCC(
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Mixed states

Not pure states:

e outcome of a random preparation

e part of a larger entangled state

An ensemble of pure states £ : {p;, [1;)} can be denoted by a density
hefore
0.8 X0
0= ZP:‘WQW:‘\» oS A (17)

operator

where |1);) are individual states that could be prepared and p; are the

corresponding probabilities. We refer to objects o as density matrices.
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Exercise

There are three necessary and sufficient criteria that a matrix corresponds
to a valid description to a quantum state. Show that
W\ilﬁzz;
Pé q o= Zp,\z@\w,\, (18)
" U progators

” where ) . p1 = 1 satisfies all tiyree of them bigis of

Po
\/ 1.Q is Hermitian 1 7 ¢ = Py ‘ do 8/\"’.73

2.6 is positive semi-definite 2 O . P |
n
3. Trm = | S _,@—J/

O(

LA hermitian matrix A satisfies AT = A
5 - - - - o | : .
Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive.
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If p is pure, it can be written as a projector on the corresponding pure

state |1))
S N (19)

N O — O O
g= N q;w\n_ .
o . 2 \O
at P
G‘L: k qq%.\ ) G.Pung-: 1 \0\

O
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Church of the larger Hilbert space

Suppose that the person, say Alice, who prepares thiscensemble can keep
track of ‘which state’ she prepared. In other words, she has the additional
classical label |x) (x| attached to the state o, € D(Hpg), where {|x)}
forms an orthonormal basis of Hx. Such a hybrid classical-quantum

system can be described as

oxg = ) @RIx)X) © ) (). (20)

xeX
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Unitary evolution

[9) = Ul (21)

For a general quantum state described by a density matrix (21) takes

form

p—~UpUl= > Ui} {wi| U" (22)
S _Z P X |
s> = Of¥ )

S p‘&)l"*’X’\\’lU
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Schrodinger equation

ihd =HIY) Ja= A ;Jlum‘(\zi.)y.

where h is the Planck constant and H is the system Hamiltonian.

Eigenvalues of Hamiltonian define the allowed energies of a system.

Physicists and chemists really care about this!!

gz“‘»\'l“' wer X
Sy = e w = |9 (01)

2. vechor imitwry  opation
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Exercise

Define purity of a quantum state as Tr[p?]. Show that unitary operations
preserve purity, i.e. a pure state never gets mapped onto a mixed state

and vice versa. (

puse- Tr(ﬂ’z')=4

mixed V(%) <1

< 5 UQU+ E$EGF
LECTURE

T | UTU*USUJP)

= (¢ (U SC U+)
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CPTP maps

Channels are the most general operation of quantum states. They must
be always map quantum states onto quantum states, even if if we apply
the channel only on a subset of qubits. Any such channel can be written

as

®(0c)=> BioBl where Y BBl =1. (24)
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No cloning theorem

Theorem (No-Cloning theorem)
There is no unitary operation U.opy, on Ha @ Hp such that for all

1) a € Ha and |0)g € Hp

Ucopy (|6)a @ 10)8) = ®|3) 4 @ |9) 5 (25)

for some number f(¢) that depends on the initial state |¢).
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Exercise

Prove the no-cloning theorem by contradiction.

a Assuming Ucopy exists, take two states |¢pa) and |¢)). Now apply

Ucopy On both of them and compute the resulting inner product
({8la ® (01) Ulopy Ucopy (1) 4 ® |0) ).

b Explain how (a) leads to a contradiction.
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Quantum measurement

Obtain classical information from a quantum state. It can destroy the

superposition property of a quantum state.

Observe this qubit in state |0) with probability |«|® and in state |1) with
probability |3]|%. Furthermore, after the measurement, the qubit state |b)

will disappear and collapse to the observed state |0) or |1).

s | | |

[ ]
-III.IIII

‘ FIER
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General quantum measurement

A collection of T := {M;}, where each measurement operator

M; € L(H) satisfies
> M= (26)
and each M; is positive semi-definite operator. We call this

measurements positive operator-valued measure (POVM). The

probability of obtaining an outcome / on a quantum state p is
pi := Tr(M;p). (27)

The state after measurement will be altered as

Mip
[0 = o
Pi
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Projective measurement

Each M; is a projector

and the resulting state
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