# Methods in quantum computing

Mária Kieferová

August 12, 2022

University of Technology Sydney

- Updated lecture notes from Lecture #1 and new notes for Lecture #2 are available
- Recording for Lecture #1 is available
- https://jamboard.google.com/ is a useful tool for working on problems together
- Slack channel on SQA Slack for the class let me know if you weren't added

- 1. Linear algebra
- 2. Quantum states
- 3. Quantum operations
- 4. No-cloning theorem
- 5. Measurement

# Linear algebra

0

0100...0

600 A *d*-dimensional Hilbert space  $\mathcal{H}$  is a vector space equipped with an  $\mathcal{A}$ inner product. Let  $\{e_i\}_{i=0}^{d-1}$  be the computational basis, where  $e_i$  is a column vector of zeros except a '1' at the (i + 1)-th entry. Any vector  $\mathbf{v} \in \mathcal{H}$  can be decomposed into basis vectors  $\mathbf{e}_i$  as  $\mathbf{v} = \sum_{i=0}^{d-1} \mathbf{v}_i \mathbf{e}_i, = \mathbf{v}_0 \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} + \mathbf{v}_1 \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} + \dots \quad (1)$ for some complex number  $v_i \in \mathbb{C}$ . The inner product (or dot product) '·' of two vectors  $\boldsymbol{u}$  and  $\boldsymbol{v}$  in the same basis in  $\mathcal{H}$  is defined as

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^{\dagger} \boldsymbol{v} = \sum_{i=0}^{d-1} u_i^* v_i, \qquad (2)$$

where  $\dagger$  denotes transpose and conjugate.  $\dagger$  conjugate  $( ) \rightarrow (a_{*}^{*} a_{7}^{*} )$   $\dagger$  ranspose Denote  $|i\rangle \equiv e_i$  and write  $\mathbf{v}$  as  $|v\rangle$ :

$$|v\rangle = \sum_{i=0}^{d-1} v_i |i\rangle.$$
(3)

The inner product

$$\langle u|v\rangle = \sum_{i,j} u_i^* v_j \langle i|j\rangle = \sum_i u_i^* v_i \qquad (4)$$
where  $\langle u| \equiv |u\rangle^{\dagger}$  is now a row vector and  $\langle i|j\rangle = \delta_{i,j}$ .
$$\begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i \geq j \end{cases}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \notin 1$$



# Linear maps

$$L: U \to V$$

$$L: U \to V$$

$$L(M_{1}) = N_{1}$$

$$L(M_{2}) = N_{2}$$

$$L(M_{1} + d_{1}M_{2}) = N_{1} + d_{1}N_{2}$$

$$S(alor)$$

#### Example: Matrix multiplication

Given an linear operator L, there is an equivalent matrix representation n the basis spanned by  $\{|i\rangle\langle k|\}$ : Hermitian matrix H, the spectral theorem states that there exists an orthonormal basis  $\{|\nu_i\rangle\}$  and real numbers  $\{\lambda_i\} \in \mathbb{R}$  so that

$$H = \sum_{i} \lambda_{i} |\nu_{i}\rangle \langle \nu_{i}|.$$
 (6)

Equivalently,  $\{\lambda_i\}$  and  $\{|\nu_i\rangle\}$  are known as eigenvalues and eigenvectors of H, respectively.

Verify that Pauli X is a Hermitian operator and compute its eigenvalues

and eigenvectors.

$$\chi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

**Tensor product of Hilbert spaces** 

 $\Delta x_{A} \quad \Delta x_{B}$ 

Given two vectors  $|u\rangle \in \mathcal{H}_A$  and  $|v\rangle \in \mathcal{H}_B$ , the tensor product ' $\otimes$ ' of them is  $|u\rangle \otimes |v\rangle = \sum_{i=0}^{d_A-1} \sum_{j=0}^{d_B-1} u_i v_j |i\rangle \otimes |j\rangle,$  (7)

a vector of  $d_A d_B$ -dimension. If  $\{|i\rangle_A\}$  and  $\{|j\rangle_B\}$  are orthonormal bases in  $\mathcal{H}_A$  and  $\mathcal{H}_B$ , respectively, then  $\{|i\rangle_A \otimes |j\rangle_B\}$ ,  $i \in \{0, \dots, d_A - 1\}$  and  $j \in \{0, \dots, d_B - 1\}$ , forms an orthonormal basis in  $\mathcal{H}_A \otimes \mathcal{H}_B$ . The inner product on the space  $\mathcal{H}_A \otimes \mathcal{H}_B$  is defined by

$$(\langle u_1|_A \otimes \langle u_2|_B)(|v_1\rangle_A \otimes |v_1\rangle_B) = \langle u_1|v_1\rangle\langle u_2|v_2\rangle.$$
(8)



#### Trace

TrL= ۵<sup>‡</sup>۴ ( ) م The trace maps is defined as  $\mathsf{Tr}(j)\langle k | = \langle k | j \rangle = \delta_{k,j}.$ (10)From linearity, the trace of an operator L is  $\mathbf{Tr} L = \sum_{i=0}^{d-1} \langle i | L | i \rangle = \sum_{j} L_{j,j}.$ (11)

# Exercise

- Cyclic property: Show that Tr LM = Tr ML.
- Show that Tr A is independent of the basis of A.

$$Tr(ML) = \sum_{i} KiIL_{i} M(i) = \sum_{i} LiL_{i} CiIL_{i} CiIMIi$$

$$= \sum_{i} LiM(i) = \sum_{i} Aii$$

$$Tr(ML) = \sum_{i} M_{i} L_{i}$$

$$= \sum_{i} C_{i} M_{i} L_{i}$$

$$= \sum_{i} C_{i} M_{i} L_{i}$$

$$= \sum_{i} C_{i} M_{i} L_{i}$$

$$A = \sum_{ij} A_{ij} |iX_j|$$

$$i > \cup |i\rangle$$

1=2:4%)

### Partial trace

**C** 

T

A generalization of a trace. Partial trace maps an operator to a lower-dimensional operator. Formally, partial trace  $\operatorname{Tr}_A : \mathcal{L}(\mathcal{H}_{AB}) \to \mathcal{L}(\mathcal{H}_B)$  is defined by  $\operatorname{Tr}_{A}(|i\rangle\langle j|_{A}\otimes|k\rangle\langle \ell|_{B})=\langle j|i\rangle|k\rangle\langle \ell|_{B}=\delta_{i,j}|k\rangle\langle \ell|_{B}.$ (12)For a composite system on the space  $\mathcal{H}_A \otimes \mathcal{H}_B$ ,  $Tr_A$  gives trace only over

the subsystem on  $\mathcal{H}_A$  and remains subsystem  $\mathcal{H}_A$  intact. We often say that we "trace-over A".

Use the ket notation  $|\cdot\rangle$  to denote a column vector of length one, e.g.,

$$|\psi\rangle := \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \tag{13}$$

and use the bra notation  $\langle \cdot |$  to denote the hermitian conjugate of  $| \cdot \rangle$ :

$$\langle \psi | := \begin{pmatrix} \alpha^* & \beta^* \end{pmatrix}. \tag{14}$$

14

An alternative representation of a quantum state is the density matrix. For pure states:

$$\begin{cases} \gamma_{\psi} = |\psi\rangle\langle\psi| \qquad (15) \end{cases}$$

# Joint quantum state

Given  $|\psi\rangle_A \in \mathcal{H}_A$  and  $|\phi\rangle_B \in \mathcal{H}_B$ , the joint quantum state is  $|\varphi\rangle_{AB} \equiv |\psi\rangle_A \otimes |\phi\rangle_B \in \mathcal{H} \equiv \mathcal{H}_A \otimes \mathcal{H}_B.$ If one of the subsystems, say  $\mathcal{H}_A$ , is lost from  $|\varphi\rangle_{AB}$ , the residue

quantum state can be expressed as

$$\begin{aligned} |\phi\rangle\langle\phi|_{B} &= \operatorname{Tr}_{A}|\varphi\rangle\langle\varphi|. \end{aligned} \tag{16} \\ \begin{array}{l} \text{(16)} \\ \text{(16)$$

Exercise

 $Tr_{A}(|\phi X \phi|_{AB}) = \sigma_{B} \in \mathcal{X}_{B}$   $\chi_{A} \otimes \mathcal{X}_{B}$ 

Let  $|\Phi\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$ . Compute  $\text{Tr}_A (|\Phi\rangle \langle \Phi|_{AB})$  and  $Tr_B(|\Phi\rangle\langle\Phi|_{AB})$ . Discuss whether the result could be a pure state (no mixed states

Not pure states:

- outcome of a random preparation
- part of a larger entangled state

An <u>ensemble</u> of pure states  $\mathcal{E} : \{p_i, |\psi_i\rangle\}$  can be denoted by a density operator  $\sigma := \sum_i p_i |\psi_i\rangle \langle\psi_i|, \qquad \begin{array}{c} \mathbf{O} \cdot \mathbf{S} & \mathbf{D} \times \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{D} \times \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{D} \times \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{D} \times \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{O} \times \mathbf{O} \\ \mathbf{O} \cdot \mathbf{S} & \mathbf{O} \\ \mathbf{O}$ 

where  $|\psi_i\rangle$  are individual states that could be prepared and  $p_i$  are the corresponding probabilities. We refer to objects  $\sigma$  as **density matrices**.

There are three necessary and sufficient criteria that a matrix corresponds

to a valid description to a quantum state. Show that



<sup>1</sup>A hermitian matrix A satisfies  $A^{\dagger} = A$ . <sup>2</sup>Eigenvalues of a positive semi-definitive matrix are real and equal to 0 or positive. If  $\rho$  is pure, it can be written as a projector on the corresponding pure state  $|\psi\rangle$ 

$$\sigma_{\psi} = |\psi\rangle\langle\psi|. \tag{19}$$

$$\sigma_{\psi} = |\psi\rangle\langle\psi|. \tag{19}$$

$$\sigma_{\psi} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\sigma_{\psi} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\sigma_{\psi} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\sigma_{\psi} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

19

Suppose that the person, say Alice, who prepares this ensemble can keep track of 'which state' she prepared. In other words, she has the additional classical label  $|x\rangle\langle x|$  attached to the state  $\sigma_x \in \mathcal{D}(\mathcal{H}_B)$ , where  $\{|x\rangle\}$  forms an orthonormal basis of  $\mathcal{H}_X$ . Such a hybrid classical-quantum system can be described as

$$\sigma_{XB} = \sum_{x \in \mathcal{X}} p_x |x\rangle \langle x| \otimes |\psi_x\rangle \langle \psi_x|.$$
(20)

$$|\psi\rangle \rightarrow U |\psi\rangle$$
. (21)

For a general quantum state described by a density matrix (21) takes form

$$\rho \rightarrow U\rho U^{\dagger} = \sum_{i} U |\psi_{i}\rangle \langle\psi_{i}| U^{\dagger}.$$

$$S = Z_{i} P_{i} |\Psi_{i} \times \Psi_{i}|$$

$$|\Psi_{i}\rangle \rightarrow U|\Psi_{i}\rangle$$

$$|\Psi_{i}\rangle \rightarrow U|\Psi_{i}\rangle \langle\Psi_{i}| U^{\dagger}$$

$$S \rightarrow Z_{i} P_{i} U_{i} |\Psi_{i} \times \Psi_{i}| U^{\dagger}$$

$$(22)$$

$$i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle$$
  $\hbar = 1$  , the mitican

where  $\hbar$  is the Planck constant and H is the system Hamiltonian.

Eigenvalues of Hamiltonian define the allowed energies of a system.

Physicists and chemists really care about this!!  

$$|\Psi(t)\rangle = \underbrace{e^{-iHt}}_{2^{n}} |\Psi(0)\rangle$$
  
where  $\psi(0)$ 

# Exercise

Define purity of a quantum state as  $Tr[\rho^2]$ . Show that unitary operations preserve purity, i.e. a pure state never gets mapped onto a mixed state and vice versa.

pune 
$$Tr(g^2) = \Lambda$$
  
mixed  $Tr(g^2) < \Lambda$   
 $S \rightarrow U S U^{\dagger}$   
 $Tr(USU^{\dagger}USU^{\dagger})$   
 $= Tr(USSU^{\dagger})$ 

Channels are the most general operation of quantum states. They must be always map quantum states onto quantum states, even if if we apply the channel only on a subset of qubits. Any such channel can be written as

$$\Phi(\sigma) = \sum_{i} B_{i} \sigma B_{i}^{\dagger} \quad \text{where} \quad \sum_{i} B_{i} B_{i}^{\dagger} = 1.$$
 (24)

# **Theorem (No-Cloning theorem)** There is no unitary operation $U_{copy}$ on $\mathcal{H}_A \otimes \mathcal{H}_B$ such that for all $|\psi\rangle_A \in \mathcal{H}_A$ and $|0\rangle_B \in \mathcal{H}_B$

$$U_{\rm copy}(|\phi\rangle_A \otimes |0\rangle_B) = e^{if(\phi)} |\phi\rangle_A \otimes |\phi\rangle_B$$
(25)

for some number  $f(\phi)$  that depends on the initial state  $|\phi\rangle$ .

Prove the no-cloning theorem by contradiction.

- a Assuming  $U_{copy}$  exists, take two states  $|\phi_A\rangle$  and  $|\psi\rangle$ . Now apply  $U_{copy}$  on both of them and compute the resulting inner product  $(\langle \phi |_A \otimes \langle 0 |_B) U_{copy}^{\dagger} U_{copy} (|\psi\rangle_A \otimes |0\rangle_B).$
- b Explain how (a) leads to a contradiction.

Obtain classical information from a quantum state. It can destroy the superposition property of a quantum state.

Observe this qubit in state  $|0\rangle$  with probability  $|\alpha|^2$  and in state  $|1\rangle$  with probability  $|\beta|^2$ . Furthermore, after the measurement, the qubit state  $|b\rangle$  will disappear and collapse to the observed state  $|0\rangle$  or  $|1\rangle$ .



A collection of  $\Upsilon := \{M_i\}$ , where each measurement operator  $M_i \in \mathcal{L}(\mathcal{H})$  satisfies

$$\sum_{i} M_{i} = I \tag{26}$$

and each  $M_i$  is positive semi-definite operator. We call this measurements positive operator-valued measure (POVM). The probability of obtaining an outcome *i* on a quantum state  $\rho$  is

$$p_i := \operatorname{Tr}(M_i \rho). \tag{27}$$

The state after measurement will be altered as

$$\rho_i := \frac{M_i \rho}{p_i}.$$

Each  $M_i$  is a projector

$$p_j := \operatorname{Tr}\left(P_j |\phi\rangle\langle\phi|\right)$$

and the resulting state

$$\frac{P_j |\phi\rangle}{\sqrt{p_j}}$$