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Class overview

e UTS undergraduates + SQA grads

e assumes familiarity with quantum computing and mathematical

maturity (linear algebra, theorems and proofs)
e 12 weeks, 3 months, 3hour lecture + tutorial per week
e 3 types of assessments: problem sets, group video, final project
e 50% required to pass, attendance not required (but recommended)

e info on Canvas and

www.mariakieferova.com/methods-in-quantum-computing

e office hours immediately after class or by appointment


(null)://(null)www.mariakieferova.com/methods-in-quantum-computing

Topic overview

1. Quantum formalism, quantum mechanics and quantum information
theory

2. Quantum stack - physical implementation, architecture and
quantum error correction

3. Quantum algorithm and complexity

4. Quantum communication and entanglement

Do you guys just})ut the n‘/?rd‘
“quantum® in frontof everything.
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Introduce yourself to the class! Were are you from? What are your plans

for this weekend?



1. Motivation behind quantum computing
2. Models of computation

3. Quantum circuits



Computational models

(a) Turing machine (b) Conway’s game of life

(c) Power Point (d) Minecraft
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Why are you interested in quantum computing?

What topics are you working on and why did you choose them?



Turing machine

e [ a non-empty alphabet, i.e. a set of allowed symbols

e b e[ ablank symbol

2> C T a set of symbols that initially appear on the tape

Q a finite set of states of the machine

go € Q the initial state

o F C Q set of 3ggenting states. If the TM reaches one of these states, the computation

finishes and the input is accepted ("yes").

0:Q\F XTI — Q xT x {left, right} is the transition function.

XCC;V\QO. ‘ll 10



Turing machines

Deterministic Nondeterministic
f(n) reject f(n)
1 _accept
l _ accept/reject } reject l
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Church-Turing thesis

ua{— o Lheorem

G amburme compater com be simulyte

clawically Wi €fp overheaocf

A Turing machine can simulate any realistic model of

computation.

compm{-oxbi li }
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Extended Church—Turing thesis
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A probabilistic Turing machine can efficiently simulate any

realistic model of computation. >
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Logical circuits

Denote B" := Z75. Let f : B” — B™ be a Boolean function that takes an
n-bit string as input and outputs an m-bit string. Let G be a collection of

basic logic gates. A Boolean circuit for f is a sequence of gates

{g1, - ,8L} € G which converts an input x € B" to the output y € B™

with a fixed size of K auxiliary bits.
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Logical gates
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Uniform circuit families
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1Y W‘“K"’S Q o
Show that the NAND and FANOUT (copy) are universal for

computation, i.e. they can be used to express all possible truth tables.

(a) Show that the NOT gate can be simulated using a single NAND
gate. o S 00

. A=) 11
(b) Show that the AND gate can be simulated with a cdnstant number
of NAND gates.

(c) Show that the OR gate can be simulated with a constant number of
NAND gates. Hint: in the footnote !. How many NAND:s is
required for this construction?

You might use additional bits initialized to 0 or 1.
lUse De Morgan's Law: A OR B = NOT ( NOT A AND NOT B).
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Reversible circuits

Logical circuits that can be inverted are known as reversible circuits.

N input = output
b ""1.} - ®
AND
_ hO“' ‘S
anb= reverSible

omnc| isn!t revesinle
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Exercise

What operations in Table 1 are reversible? What are the inverse

operations to the reversible gates in Tables 1 and 27

hok # inputs =#°“A;P”+_S
cNoT O, = (O)
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) = al0) + B|1) = Hello
valid qmw\rums
where |a]*+ [B8]° = 1
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Quantum operations

Given an initial state [1)g), we can apply a gate U to obtain a new state

Y1)
1) = U |vo) -

A 40
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Exercise

Show that quantum operations must be unitary in order to preserve the

norm of quantum states. An operation U is unitary if and only it satisfies

U-l=ur.
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Exercise

a Show that for a unitary matrix U, |det(U)| = 1. Hint: in a footnote.

b A global phase of a quantum state is not detectable. In other words,
states |1) and e'¥ |¢)) represent the same physical state. What

consequence will it have for single qubit gates?

c Write the most general single qubit gate U using the convention

det(U) = 1.
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Exercise

What is the state state prepared by this circuit?
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Solovay-Kitaev

Given any universal set of gates G that is closed under inverse, any
unitary operation U € SU(d) can be e-approximated using O(log®(2))

gates from G for some constant c. 1

9 T CheTy el
W ToH)  Pavenco & co.
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Exercise

1. Show that Sy /)
PARE Pt

2. Show that HZH = X and HXH = Z.

3. How would one construct CZ out of CNOT and single qubit gates?

4. Showthat_H /L Hl— i

28



2 = loxo [ = 1aXx 4|
H=7\V'i' l1oXol + (4¥X0o | +1oX1| ~I/\X4\)

cvoT= oXol@ Al t 14Xl X
A = (O X Ol =+ 4AXA|
loxol®@ AL + 12X 2 ‘
loX0l® |0X0| - 10X0| & |AX1] 4
r(AX Al FlOX O] = AX4 @ )4 X4)
=\ (0% L% 14%4 o _

( AL I)GIOS( [+ (toxg WJPW’

= qorioxol +20Ax1] = 2-¢

Cc-2 =

29



