
Problem set 3 for 41076: Methods in Quantum

Computing

due at 11:59 pm of October 9th 2022
15 points

1 Paulis (6 points)

Consider the Pauli matrices σ1 = X, σ2 = Y and σ3 = Z

1. Show that the anticommutator {A,B} = AB +BA for Paulis satisfies

{σj , σk} = 2δj,kI (1)

where δi,j is the Kronecker delta, δi,j = 1 if j = k and 0 otherwise.

2. Show that the commutator [A,B] = AB −BA for Paulis satisfies

[σj , σk] = i2εj,k,lσl (2)

Here we use Einstein notation (εj,k,lσl stands for
∑

l εj,k,lσl) and the Levi-Civita ε symbol in 3
dimensions. For Levi-Civita, ε1,2,3 = 1 and exchanging any two indices satisfies εj,k,l = −εk,j,l
(completely antisymmetric). Thus, ε2,1,3 = ε1,3,2 = ε3,2,1 = −1. because of the antisymmetry,
εj,k,l will be zero if any of the indices are equal to each other, i.e. ε1,1,2 = 0.

3. Show that
σjσk = δj,kI + iεj,k,lσl. (3)

This is a useful identity whenever one needs to multiply a lot of Paulis.

4. Consider Paulis on one qubit

P = {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} (4)

Show that P with multiplication forms a group.

2 Clifford gates (5 points)

This problem will demonstrate how stabilizers can be used used for efficiently performing certain
quantum computation.

1. Consider a state |ψ〉 = |0〉|+〉. Find two two-qubit Paulis P1, P2 (other than identity or its
multiples) that stabilize this state, i.e. P1|ψ〉 = P2|ψ〉 = |ψ〉.

1

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://en.wikipedia.org/wiki/Levi-Civita_symbol

2. Compute SZS† where S is the phase gate S =

(
1 0

0 e−
iπ
2

)
3. Use stabilizers (i.e. not quantum states) to simulate the following circuit. What will be the

stabilizers corresponding to the output?

|0〉 S

|+〉 •

3 Complexity of a quantum algorithm (4 points)

The goal of this problem is to estimate the gate complexity and query complexity of a quantum
algorithm for computing gradient. Let f : Rd → R be a function of d variables. We would like to

estimate its gradient ∇f =
(
∂f
∂x1

, ∂f∂x2 , . . . ,
∂f
∂xd

)
up to an error 1

ε2
.

|0〉1 H •

QFT.
.
.

|0〉n H •

|0〉n+1 H •

QFT.
.
.

|0〉2n H •

|0〉(d−1)n+1 H •

QFT.
.
.

|0〉dn H •

|0〉1

inverse QFT Of
.
.
.

|1〉n0

Figure 1: A quantum gradient algorithm by Jordan.

1. First, we estimate the complexity of a classical algorithm. For each component of the gra-
dient ∂f

∂xi
, we evaluate the function f in points f(x0, . . . , xi + ε/2, . . . , xd) and f(x0, . . . , xi −

ε/2, . . . , xd) and compute ∂f
∂xi
≈ f(x0,...,xi+ε/2,...,xd)−f(x0,...,xi−ε/2,...,xd)

ε . How many queries to f
does this algorithm use? A tight bound in big-O notation is sufficient.

2. A quantum algorithm accesses f through an oracleOf such thatOf |x1, . . . , xd〉|z〉 = |x1, . . . , xd〉|z⊕
f(x)〉 where each register xi consist of n qubits and z a real number encoded into n0 qubits.
The circuit for approximating the gradient is depicted in Fig. 1. It uses d input register with
n qubits each and an output register with n0 qubits. First, it performs a Hadamard transform
on the input registers and inverse quantum Fourier transform on the output register. Next,
we apply the oracle and lastly apply QFT on each input register. Compute the gate and query
complexity of the algorithm. Big-O asymptotic result in terms of d, n and n0 is sufficient.

2

While this algorithm is indeed very interesting, it does not have a lot of applications in quantum
computing because the oracle Of is very powerful and its implementation often wipes out the
speedup.

3

	Paulis (6 points)
	Clifford gates (5 points)
	Complexity of a quantum algorithm (4 points)

