Problem set 1 for 41076: Methods in Quantum Computing

due August 26th, at 2 pm

15 regular +2 bonus points

1 Linear algebra refresher (7 points)

Let us consider U to be a 2-by-2 unitary matrices such that $\operatorname{det} U=1$.

1. Let us write $U=(\vec{u} \vec{v})$ where \vec{u}, \vec{v} correspond to the columns of matrix U. Show that if U is unitary, \vec{u}, \vec{v} must be orthonormal (both vectors have norm 1 and are orthogonal to each other).
Note: One could use the exact same steps to show that the rows are also orthonormal (this is not required in this problem set). This means that if we write $U=\binom{\vec{a}^{T}}{\vec{b}^{T}}$ where \vec{a}^{T}, \vec{b}^{T} are row vectors, \vec{a}^{T}, \vec{b}^{T} are also orthonormal.
2. Show that any 2-by-2 unitary matrix with determinant 1 can be expressed as

$$
\left(\begin{array}{cc}
e^{i(\alpha / 2+\beta / 2)} \cos \frac{\theta}{2} & e^{i(\alpha / 2-\beta / 2)} \sin \frac{\theta}{2} \tag{1}\\
-e^{i(-\alpha / 2+\beta / 2)} \sin \frac{\theta}{2} & e^{i(-\alpha / 2-\beta / 2)} \cos \frac{\theta}{2}
\end{array}\right)
$$

where α, β, θ are real-valued. This means not only that matrix (1) is unitary but also that this is the most general form of a unitary matrix. Part 1 might be helpful for this.
3. Define single qubit rotation gates

$$
R_{z}(\phi)=\left(\begin{array}{cc}
e^{i \phi / 2} & 0 \tag{2}\\
0 & e^{-i \phi / 2}
\end{array}\right) \quad R_{y}(\phi)=\left(\begin{array}{cc}
\cos \frac{\phi}{2} & \sin \frac{\phi}{2} \\
-\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right) .
$$

Show that the matrix in Eq. (1) can be implemented using three rotations as $R_{z}(\alpha) R_{y}(\theta) R_{z}(\beta)$.

2 Quantum circuits (4 points)

1. Define $\operatorname{Ph}(\delta)=\left(\begin{array}{cc}e^{i \delta} & 0 \\ 0 & e^{i \delta}\end{array}\right)$ to be a global phase gate (also known as phase shift). Show that there is always a gate $E(\delta)$ such that the identity in Fig. 1 holds.
2. Suppose we implemented the circuit in Fig. 2 and measured the first register. If we measure the first qubit to be in a state $|0\rangle$, what is the state of the second register? The white-control notation means that the control is activated if the qubit is in state 0 while the black control is a standard controlled gate, activated if the control qubit is in state 1 .

Figure 1: Prove that controlled global phase can be written as a single qubit gate on the control register.

Figure 2: What is the state of the second register if the state of the first register was measured to be $|0\rangle$?

3 Working with pure and mixed states (6 points)

Alice and Bob share the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A}|1\rangle_{B}-|1\rangle_{A}|0\rangle_{B}\right)$.

1. Verify that $|\langle\psi \| \psi\rangle|=1$
2. Compute the density matrix $\sigma=|\psi\rangle\langle\psi|$.
3. Compute the purity $\operatorname{Tr}\left(\sigma^{2}\right)$. Is σ pure?
4. Compute the density matrix of Alice's state $\sigma_{A}=\operatorname{Tr}_{B}(\sigma)$.
5. Compute the purity of Alice's state. Is Alice's state pure?
6. Is $|\psi\rangle$ an entangled state and why/why not?
