41076: Methods in Quantum Computing

Quantum channels, measurements and tomography

Dr. Mária Kieferová based on the materials from Dr. Min-Hsiu Hsieh
Centre for Quantum Software \mathcal{B} Information, Faculty of Engineering and Information Technology, University of Technology Sydney

Abstract

Contents to be covered in this lecture are

1. The no-cloning theorem
2. Distance measures
3. Quantum channels
4. Noise channels
5. Measurement

In the last lecture we covered quantum states and unitary operations. Today we will continue with a description of a more general form of operations.

1 The no-cloning theorem

A non-intuitive property of quantum mechanics that would be able to copy a general (unknown) quantum state. This is in stark contrast with classical information that can be always copied.

Suppose that we have two quantum systems of equal size $\mathcal{H}_{A}=\mathcal{H}_{B}$. Given a quantum state $|\phi\rangle_{A} \in \mathcal{H}_{A}$, if quantum mechanics allows the operation of 'copying', then this copying operation $U_{\text {copy }}$ should achieve

$$
\begin{equation*}
U_{\text {copy }}\left(|\phi\rangle_{A} \otimes|0\rangle_{B}\right)=|\phi\rangle_{A} \otimes|\phi\rangle_{B} . \tag{1}
\end{equation*}
$$

In other words, the copying operation should produce a second copy of $|\phi\rangle$ in \mathcal{H}_{B} (that was initially prepared in some ground state $|0\rangle_{B}$.)
Theorem 1 (No-Cloning theorem). There is no unitary operation $U_{\text {copy }}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that for all $|\psi\rangle_{A} \in \mathcal{H}_{A}$ and $|0\rangle_{B} \in \mathcal{H}_{B}$

$$
\begin{equation*}
U_{\text {copy }}\left(|\phi\rangle_{A} \otimes|0\rangle_{B}\right)=e^{i f(\phi)}|\phi\rangle_{A} \otimes|\phi\rangle_{B} \tag{2}
\end{equation*}
$$

for some number $f(\phi)$ that depends on the initial state $|\phi\rangle$.
Exercise 2. Prove the no-cloning theorem by contradiction.
a Assuming $U_{\text {copy }}$ exists, take two states $\left|\phi_{A}\right\rangle$ and $|\psi\rangle$. Now apply $U_{\text {copy }}$ on both of them and compute the resulting inner product
$\left(\left\langle\left.\phi\right|_{A} \otimes\left\langle\left. 0\right|_{B}\right) U_{\text {copy }}^{\dagger} U_{\text {copy }}\left(|\psi\rangle_{A} \otimes|0\rangle_{B}\right)\right.\right.$.
b Explain how (a) leads to a contradiction.

1.1 Proof of the non-cloning theorem

Assume such a coping operation exists. Then for any two states $|\psi\rangle_{A},|\phi\rangle_{A} \in \mathcal{H}_{A}$, the following holds

$$
\begin{align*}
U_{\text {copy }}\left(|\phi\rangle_{A} \otimes|0\rangle_{B}\right) & =e^{i f(\phi)}|\phi\rangle_{A} \otimes|\phi\rangle_{B} \tag{3}\\
U_{\text {copy }}\left(|\psi\rangle_{A} \otimes|0\rangle_{B}\right) & =e^{i f(\psi)}|\psi\rangle_{A} \otimes|\psi\rangle_{B} . \tag{4}
\end{align*}
$$

Now

$$
\begin{align*}
\left(\left\langle\left.\phi\right|_{A} \otimes\left\langle\left. 0\right|_{B}\right) U_{\mathrm{copy}}^{\dagger} U_{\mathrm{copy}}\left(|\psi\rangle_{A} \otimes|0\rangle_{B}\right)\right.\right. & =\langle\phi \mid \psi\rangle_{A} \tag{5}\\
& =e^{i(f(\psi)-f(\phi))}\langle\phi \mid \psi\rangle_{A}\langle\phi \mid \psi\rangle_{B} . \tag{6}
\end{align*}
$$

The first equality follows because $U_{\text {copy }}^{\dagger} U_{\text {copy }}=I$ and $\langle 0 \mid 0\rangle_{B}=1$. Hence

$$
\begin{equation*}
\left|\langle\phi \mid \psi\rangle_{A}\right|^{2}=\left|\langle\phi \mid \psi\rangle_{A}\right|, \tag{7}
\end{equation*}
$$

which implies that either $\left|\langle\phi \mid \psi\rangle_{A}\right|=1$ or $\left|\langle\phi \mid \psi\rangle_{A}\right|=0$. This allows us to conclude that not a single universal copying operation $U_{\text {copy }}$ exists for two arbitrary states.

2 Distance Measures

2.1 Matrix Norm

We will introduce a few useful matrix norms in this section. First of all, every norm $\|\cdot\|$ must satisfy the following conditions.

- $\|A\| \geq 0$ with equality if and only if $A=0$.
- $\|\alpha A\|=|\alpha|\|A\|$ for any $\alpha \in \mathbb{C}$.
- Triangle inequality: $\|A+B\| \leq\|A\|+\|B\|$.

Definition 3 (Schatten norm). For $p \in[1, \infty)$, the Shatten p-norm of a matrix $A \in \mathbb{C}^{m \times n}$ is defined as

$$
\begin{equation*}
\|A\|_{p}:=\operatorname{Tr}\left(|A|^{p}\right)^{\frac{1}{p}} \tag{8}
\end{equation*}
$$

where $|A|:=\sqrt{A^{\dagger} A}$. We extend $p \rightarrow \infty$ as follows

$$
\begin{equation*}
\|A\|_{\infty}:=\max \left\{\|A \boldsymbol{x}\|: \forall \boldsymbol{x} \in \mathbb{C}^{n},\|\boldsymbol{x}\|=1\right\} \tag{9}
\end{equation*}
$$

Properties of Schatten p-norms are summarized below

1. The Schatten norms are unitarily invariant: for any unitary operators U and V

$$
\begin{equation*}
\|U A V\|_{p}=\|A\|_{p} \tag{10}
\end{equation*}
$$

for any $p \in[1, \infty]$.
2. The Schatten norms satisfy Hölder's inequality: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$
\begin{equation*}
\|A B\|_{1} \leq\|A\|_{p}\|B\|_{q}, \tag{11}
\end{equation*}
$$

where $p, q \geq 1$ and $\frac{1}{p}+\frac{1}{q}=1$.
3. Sub-multiplicativity: for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times \ell}$, it holds that

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p} . \tag{12}
\end{equation*}
$$

4. Monotonicity: for $1 \leq p \leq q \leq \infty$, it holds that

$$
\begin{equation*}
\|A\|_{1} \geq\|A\|_{p} \geq\|A\|_{q} \geq\|A\|_{\infty} . \tag{13}
\end{equation*}
$$

Exercise 4. Denote by $\sigma_{i}(A)$ the i-th (non-zero) singular value of A. Show that

$$
\begin{equation*}
\|A\|_{p}=\left(\sum_{i}\left(\sigma_{i}(A)\right)^{p}\right)^{\frac{1}{p}} \tag{14}
\end{equation*}
$$

There are important special cases of Schatten p-norm. Specifically, the Schatten 1-norm is commonly known as the trace norm, and will lead to the definition of trace distance in Sec. 2.2 . The Schatten 2-norm is also known as the Frobenius norm whose explicit form is given below.

Definition 5 (Frobenuis norm). The Frobenius norm (or the Hilbert-Schmidt norm) of a matrix $A \in \mathbb{C}^{m \times n}$ is defined as

$$
\begin{equation*}
\|A\|_{2} \equiv\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i, j}\right|^{2}} \tag{15}
\end{equation*}
$$

Finally, the Schatten ∞-norm is also called the operator norm or the spectral norm whose definition is given in Eq. (9).

2.2 Trace Distance and Fidelity

We will introduce two commonly used distance measures in quantum information science; namely the trace distance and fidelity.
Definition 6 (Trace Distance). The trace distance between two operators A and B is given by

$$
\|A-B\|_{1}:=\operatorname{Tr}|A-B| .
$$

Exercise 7.

$$
\begin{equation*}
\|\sigma-\rho\|_{1}=\max _{-I \leq \Lambda \leq I} \operatorname{Tr}[\Lambda(\sigma-\rho)] . \tag{16}
\end{equation*}
$$

Denote $T(\rho, \sigma) \equiv\|\rho-\sigma\|_{1}$. The trace distance of two density operators is an extension of total variation distance of probability measures:

$$
\begin{equation*}
T(P, Q)=\frac{1}{2} \sum_{x}|p(x)-q(x)| \tag{17}
\end{equation*}
$$

where P and Q are probability distributions with pdf $p(x)$ and $q(x)$, respectively.
Properties of the trace distance include

- $T(\rho, \sigma)=0$ if and only if $\rho=\sigma$.
- Invariant under unitary operation: $T\left(U \rho U^{\dagger}, U \sigma U^{\dagger}\right)=T(\rho, \sigma)$
- Contraction: $T(\mathcal{N}(\rho), \mathcal{N}(\sigma)) \leq T(\rho, \sigma)$, where \mathcal{N} is any trace-preserving and completely positive map.
- Convexity: $T\left(\sum_{i} p_{i} \rho_{i}, \sigma\right) \leq \sum_{i} p_{i} T\left(\rho_{i}, \sigma\right)$.

Definition 8 (Fidelity). For $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, their fidelity is

$$
F(\rho, \sigma):=(\operatorname{Tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}})^{2} .
$$

Note that fidelity is not a metric on $\mathcal{D}(\mathcal{H})$.
Exercise 9. Shot that, for $\rho, \sigma \in \mathcal{D}(\mathcal{H})$,

$$
\begin{equation*}
F(\rho, \sigma)=\min _{\Lambda_{i}}\left(\sum_{i} \sqrt{\operatorname{Tr}\left[\rho \Lambda_{i}\right] \operatorname{Tr}\left[\sigma \Lambda_{i}\right]}\right)^{2} \tag{18}
\end{equation*}
$$

where $\Lambda=\left\{\Lambda_{i}\right\}$ is a POVM [2].
Properties of the fidelity include

- Symmetry: $F(\rho, \sigma)=T(\sigma, \rho)$.
- $0 \leq F(\rho, \sigma) \leq 1$.
- $F\left(U \rho U^{\dagger}, U \sigma U^{\dagger}\right)=F(\rho, \sigma)$.
- $F\left(\left|\psi_{\rho}\right\rangle,\left|\psi_{\sigma}\right\rangle\right)=\left|\left\langle\psi_{\rho} \mid \psi_{\sigma}\right\rangle\right|^{2}$.
- $F(\mathcal{N}(\rho), \mathcal{N}(\sigma)) \geq F(\rho, \sigma)$, where \mathcal{N} is any trace-preserving and completely positive map.

3 Quantum Channels

The most general operation on quantum states is a quantum channel, also known as completely positive trace-preserving map (CPTP map). The ensures that quantum states will always get mapped onto valid quantum states. This condition is even more complicated than it sounds; if we apply a quantum channel on only a part of a quantum state, we still must get a valid density matrix after the transformation. Any such channel can be written as

$$
\begin{equation*}
\Phi(\sigma)=\sum_{i} B_{i} \sigma B_{i}^{\dagger} \quad \text { where } \quad \sum_{i} B_{i}^{\dagger} B_{i}=\mathbf{1} . \tag{19}
\end{equation*}
$$

This is known as the Kraus representation and the operators B_{i} as Kraus operators.
Exercise 10. Show that transpose is a positive map, but not a completely positive map.
Definition 11. A quantum channel \mathcal{N} is unital if $\mathcal{N}(I)=I$.

Examples

- Dephasing Channel:

$$
\mathcal{N}(\rho)=(1-p) \rho+p Z \rho Z .
$$

The Kraus operators are $B_{1}=\sqrt{1-p} I$ and $B_{2}=\sqrt{p} Z$.

- Depolarizing Channel:

$$
\mathcal{N}(\rho)=(1-p) \rho+p \pi
$$

where π is the completely mixed state.

- Pauli Channel:

$$
\mathcal{N}(\sigma)=\sum_{i, j=0}^{1} p(i, j) Z^{i} X^{j} \sigma X^{j} Z^{i}
$$

where we denote $X^{0}=Z^{0}=I$.

- Measure-and-prepare channel: For a $\operatorname{POVM}\left\{\Lambda_{i}\right\}$ and a collection of quantum states $\left\{\sigma_{i}\right\}$, we can define

$$
\begin{equation*}
\mathcal{N}(\rho)=\sum_{i} \sigma_{i} \operatorname{Tr}\left(\Lambda_{i} \rho\right) . \tag{20}
\end{equation*}
$$

This channel is also known as an entanglement-breaking channel.
Exercise 12. The set of generalized Pauli matrices $\left\{U_{m}\right\}_{m \in\left[d^{2}\right]}$ is defined by $U_{l \cdot d+k}=\hat{Z}_{d}(l) \hat{X}_{d}(k)$ for $k, l=0,1, \cdots, d-1$ and

$$
\begin{align*}
\hat{X}_{d}(k) & =\sum_{s}|s\rangle\langle s+k|=\hat{X}_{d}(1)^{k} \\
\hat{Z}_{d}(l) & =\sum_{s} e^{i 2 \pi s l / d}|s\rangle\langle s|=\hat{Z}_{d}(1)^{l} . \tag{21}
\end{align*}
$$

The + sign denotes addition modulo d. Show that

$$
\begin{equation*}
\frac{1}{d^{2}} \sum_{m=1}^{d^{2}} U_{m} \rho U_{m}^{\dagger}=\pi \tag{22}
\end{equation*}
$$

where $\pi=\frac{I}{d}$.

4 Quantum Measurement

Quantum measurement is a process to observe the classical information within a quantum state. It can destroy the superposition property of a quantum state. The quantum measurement postulate evolves from Born's rule in his seminal paper in 1926, which states that "the probability density of finding a particle at a given point is proportional to the square of the magnitude of the particle's wave function at that point". Given the qubit state $|b\rangle$ in Eq. (??), Born's rule says that we can observe this qubit in state $|0\rangle$ with probability $|\alpha|^{2}$ and in state $|1\rangle$ with probability $|\beta|^{2}$.

Furthermore, after the measurement, the qubit state $|b\rangle$ will disappear and collapse to the observed state $|0\rangle$ or $|1\rangle$.

In general, a quantum measurement is mathematically described by a collection of $\Upsilon:=\left\{M_{i}\right\}$, where each measurement operator $M_{i} \in \mathcal{L}(\mathcal{H})$ satisfies

$$
\begin{equation*}
\sum_{i} M_{i}=I \tag{23}
\end{equation*}
$$

and each M_{i} is positive semi-definite operator - this means that M_{i} is Hermitian and all the eigenvalues are larger or equal to zero. We call this measurements positive operator-valued measure (POVM). The probability of obtaining an outcome i on a quantum state ρ is

$$
\begin{equation*}
p_{i}:=\operatorname{Tr}\left(M_{i} \rho\right) . \tag{24}
\end{equation*}
$$

The state after measurement will be altered as

$$
\rho_{i}:=\frac{M_{i} \rho}{p_{i}} .
$$

The normalised condition in Eq. (23) guarantees that

$$
\begin{align*}
\sum_{i} p_{i} & =\sum_{i} \operatorname{Tr}\left(M_{i} \rho\right) \\
& =\operatorname{Tr}\left(\sum_{i} M_{i} \rho\right) \\
& =\operatorname{Tr} \rho=1 \tag{25}
\end{align*}
$$

Projective Measurement and Observables

A special instance of quantum measurements is the projective measurement. A projective measurement Υ is a collection of projectors $\left\{P_{0}, P_{1}, \cdots, P_{L-1}\right\}$ which sum to identity. Note that $P_{i} P_{j}=0$ for $i \neq j$ and $P_{i}^{2}=P_{i}$. When we measure a quantum state $|\phi\rangle$ with Υ, we will get the outcome j with probability

$$
p_{j}:=\operatorname{Tr}\left(P_{j}|\phi\rangle\langle\phi|\right)
$$

and the resulting state

$$
\frac{P_{j}|\phi\rangle}{\sqrt{p_{j}}}
$$

A projective measurement $\Upsilon=\left\{P_{i}\right\}$ with the corresponding measurement outcomes $\left\{\lambda_{i}\right\} \in \mathcal{R}$ can be efficiently represented by a Hermitian matrix $H=\sum_{i} \lambda_{i} P_{i}$. Such a matrix is called an observable. In physics, an observable is a physical quantity that can be measured. Examples of observables of a physical system include the position or momentum of a particle, among many others.

Measuring the observable H means that performing the projective measurement $\Upsilon=\left\{P_{i}\right\}$ on a quantum state $|\phi\rangle$. It follows that the expected value of the outcomes if we measure the state $|\phi\rangle$ with $\Upsilon=\left\{P_{i}\right\}$ is

$$
\begin{equation*}
\langle H\rangle:=\sum_{i} \lambda_{i} \operatorname{Tr} P_{i}|\phi\rangle\langle\phi|=\langle\phi| H|\phi\rangle . \tag{26}
\end{equation*}
$$

Exercise 13. Show that every POVM can be constructed by a projective measurement on a larger Hilbert space.

Quantum measurement can be used to distinguish a set of quantum states. We will elaborate on state distinguishability in future lectures.

Further Reading

A very good lecture note by Ronald de Wolf can be downloaded here [1].
For a better understanding of quantum channels, I would recommend [3].

References

[1] Ronald de Wolf, Quantum computing: Lecture notes, 2019.
[2] Christopher A. Fuchs and Carlton M. Caves, Ensemble-dependent bounds for accessible information in quantum mechanics, Phys. Rev. Lett. 73 (1994Dec), 3047-3050.
[3] Vinayak Jagadish and Francesco Petruccione, An invitation to quantum channels, arXiv preprint arXiv:1902.00909 (2019).

