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Abstract
Contents to be covered in this lecture are
The no-cloning theorem
Distance measures
Quantum channels
Noise channels
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In the last lecture we covered quantum states and unitary operations. Today we will continue
with a description of a more general form of operations.

1 The no-cloning theorem

A non-intuitive property of quantum mechanics that would be able to copy a general (unknown)
quantum state. This is in stark contrast with classical information that can be always copied.

Suppose that we have two quantum systems of equal size Hq4 = Hp. Given a quantum state
|p)a € Ha, if quantum mechanics allows the operation of ‘copying’, then this copying operation
Ucopy should achieve

Ucopy (I9)a ©10)8) = |¢)4 © [6) B- (1)

In other words, the copying operation should produce a second copy of |¢) in Hp (that was initially
prepared in some ground state |0)p.)

Theorem 1 (No-Cloning theorem). There is no unitary operation Ucopy on Ha ® Hp such that
for all |Y)a € Ha and |0)p € Hp

Ucopy(|6)4 ® [0)5) = €6} 4 @ |6) 5 (2)
for some number f(¢) that depends on the initial state |¢).

Exercise 2. Prove the no-cloning theorem by contradiction.

a Assuming Ucopy exists, take two states |pa) and |0). Now apply Ucopy on both of them and
compute the resulting inner product

({614 ® (0 ) Udopy Ucopy (12) 4 @ [0) 5).

b Ezxplain how (a) leads to a contradiction.



1.1 Proof of the non-cloning theorem

Assume such a coping operation exists. Then for any two states )4, |¢p)a € Ha, the following
holds

Ueopy(I0)4 @ [0)5) = €7 D|p)a® |0)p (3)
Ueopy (W) 4 ® |0)5) = /@ )4 @ [4)p. (4)
Now
({64 ® (0] B) Uy Ucopy ([¥) 4 @ [0)5) = (d|1h)a (5)
e UWI=FED (ply) 4 (1) . (6)

The first equality follows because Ugoprcopy = [ and (0|0)p = 1. Hence

(Bl al* = [{glv) al, (7)

which implies that either [(¢p|¢)) 4| = 1 or [(¢|1)) 4] = 0. This allows us to conclude that not a single
universal copying operation Ucopy exists for two arbitrary states.

2 Distance Measures

2.1 Matrix Norm

We will introduce a few useful matrix norms in this section. First of all, every norm || - || must
satisfy the following conditions.

e |[A| > 0 with equality if and only if A = 0.
o |[aA| = |a|||A] for any a € C.
e Triangle inequality: ||A+ B| < ||A]| + || B

Definition 3 (Schatten norm). For p € [1,00), the Shatten p-norm of a matric A € C"™*" is
defined as

1
Al == T(|AP)> (8)
where |A| := VATA. We extend p — oo as follows
|Al|co := max{||Az| : V& € C", |x| = 1}. (9)
Properties of Schatten p-norms are summarized below
1. The Schatten norms are unitarily invariant: for any unitary operators U and V'
I[UAV [, = [|All (10)

for any p € [1, o).



2. The Schatten norms satisfy Holder’s inequality: for A € C™*™ and B € C™**, it holds that
IABly < [[AllplIBllg, (11)

where p,q > 1 and%+%: 1.
3. Sub-multiplicativity: for A € C™*" and B € C™*, it holds that

[ABIlp < |l Bllp- (12)

4. Monotonicity: for 1 < p < g < oo, it holds that
[All = [[All, = [[Allg = [[Alloo- (13)

Exercise 4. Denote by 0;(A) the i-th (non-zero) singular value of A. Show that

1], = (me»p)i. (14)

i
There are important special cases of Schatten p-norm. Specifically, the Schatten 1-norm is

commonly known as the trace norm, and will lead to the definition of trace distance in Sec.
The Schatten 2-norm is also known as the Frobenius norm whose explicit form is given below.

Definition 5 (Frobenuis norm). The Frobenius norm (or the Hilbert-Schmidt norm) of a matriz
A € C™" s defined as

[All2 = [|AllF =

ZZ |A; 512 (15)

i=1 j=1

Finally, the Schatten oco-norm is also called the operator norm or the spectral norm whose
definition is given in Eq. @
2.2 Trace Distance and Fidelity

We will introduce two commonly used distance measures in quantum information science; namely
the trace distance and fidelity.

Definition 6 (Trace Distance). The trace distance between two operators A and B is given by
|A— Bl :=Tr|A—- B|.

Exercise 7.

— = Tr[A(o — p)]. 1
lo = pllh = _max Tr[A(o — p)] (16)
Denote T'(p,0) = ||p — o]|1. The trace distance of two density operators is an extension of total
variation distance of probability measures:
1
T(P,Q) =5 Ip() —q(x)], (17)
x

where P and ) are probability distributions with pdf p(z) and ¢(x), respectively.
Properties of the trace distance include



e T(p,0) =0 if and only if p = o.

Invariant under unitary operation: T(UpUT, UsU") = T(p, o)

Contraction: T(N(p),N (o)) < T(p,0), where N is any trace-preserving and completely
positive map.

Convexity: T'(3_,; pipi, o) < 32, piT(pi, 0).

Definition 8 (Fidelity). For p,o € D(H), their fidelity is

F(p,0) = (Tr W)Z.

Note that fidelity is not a metric on D(H).

Exercise 9. Shot that, for p,o € D(H),
F(p,0) = min (Z VTr[pAj] Tr[aAi]> 2 (18)

where A = {A\;} is a POVM [2].
Properties of the fidelity include

e Symmetry: F(p,o) =T(o,p).

0< F(p,o) <1.

F(UpUt, UcUY) = F(p,0).

F(14p), [o)) = [{¥pltho) .

e F(N(p),N(c)) > F(p,0), where N is any trace-preserving and completely positive map.

3 Quantum Channels

The most general operation on quantum states is a quantum channel, also known as completely
positive trace-preserving map (CPTP map). The ensures that quantum states will always get
mapped onto valid quantum states. This condition is even more complicated than it sounds; if
we apply a quantum channel on only a part of a quantum state, we still must get a valid density
matrix after the transformation. Any such channel can be written as

®(0) =Y BioB] where Y BIBi=1. (19)

i
This is known as the Kraus representation and the operators B; as Kraus operators.
Exercise 10. Show that transpose is a positive map, but not a completely positive map.

Definition 11. A quantum channel N is unital if N'(I) = 1I.



Examples

e Dephasing Channel:
N(p) =1 =p)p+pZpZ.
The Kraus operators are By = /1 — pl and By = \/pZ.
e Depolarizing Channel:
N(p) = (1 =p)p+pm,

where 7 is the completely mixed state.

e Pauli Channel:

1
N(o)= Y pli,))Z' X e X7’
i,j=0

where we denote X? = 279 = J.

e Measure-and-prepare channel: For a POVM {A;} and a collection of quantum states {o;},
we can define

N(p) = o:Tr(Aip). (20)
This channel is also known as an entanglement-breaking channel.

Exercise 12. The set of generalized Pauli matrices {Up }meq2) s defined by Upayr = Zay() X q(k)
fork,1=0,1,---,d—1 and

Xa(k) =" |s){(s + k| = X4(1)",

A . 5 (21)
Za(l) =Y €™ s) (s| = Zg(1)".
The + sign denotes addition modulo d. Show that
1 &

m=1

where m = é.

4 Quantum Measurement

Quantum measurement is a process to observe the classical information within a quantum state. It
can destroy the superposition property of a quantum state. The quantum measurement postulate
evolves from Born’s rule in his seminal paper in 1926, which states that “the probability density of
finding a particle at a given point is proportional to the square of the magnitude of the particle’s
wave function at that point”. Given the qubit state |b) in Eq. (??), Born’s rule says that we
can observe this qubit in state |0) with probability |a|? and in state |1) with probability |3|%.



Furthermore, after the measurement, the qubit state |b) will disappear and collapse to the observed
state [0) or [1).

In general, a quantum measurement is mathematically described by a collection of T := {M;},
where each measurement operator M; € L(H) satisfies

S =1 (23)

and each M, is positive semi-definite operator - this means that M; is Hermitian and all the
eigenvalues are larger or equal to zero. We call this measurements positive operator-valued measure
(POVM). The probability of obtaining an outcome i on a quantum state p is

pi = Tr(M;p). (24)
The state after measurement will be altered as

M;
bi '

pi =
The normalised condition in Eq. guarantees that

sz' = ZTT(MW)
= Tr (Z Mm)

= Trp=1. (25)

Projective Measurement and Observables

A special instance of quantum measurements is the projective measurement. A projective measure-
ment T is a collection of projectors {Fy, Py,- -, Pr—1} which sum to identity. Note that P;P; =0
for i # j and P? = P;. When we measure a quantum state |¢) with T, we will get the outcome j
with probability

pj = Tr(Pjl¢)(¢])

and the resulting state

bjlé)

V/Pj

A projective measurement Y = {F;} with the corresponding measurement outcomes {\;} € R
can be efficiently represented by a Hermitian matrix H = >, \;P;. Such a matrix is called an
observable. In physics, an observable is a physical quantity that can be measured. Examples of
observables of a physical system include the position or momentum of a particle, among many
others.

Measuring the observable H means that performing the projective measurement Y = {P;} on
a quantum state |¢). It follows that the expected value of the outcomes if we measure the state |¢)
with T = {P;} is

(H) := Z/\JYPH@@I = (¢lH]9). (26)



Exercise 13. Show that every POVM can be constructed by a projective measurement on a larger
Hilbert space.

Quantum measurement can be used to distinguish a set of quantum states. We will elaborate
on state distinguishability in future lectures.

Further Reading

A very good lecture note by Ronald de Wolf can be downloaded here [1].
For a better understanding of quantum channels, I would recommend [3].
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