Methods in quantum computing

Mária Kieferová

August 26, 2022

University of Technology Sydney

Today

[10pt]beamer

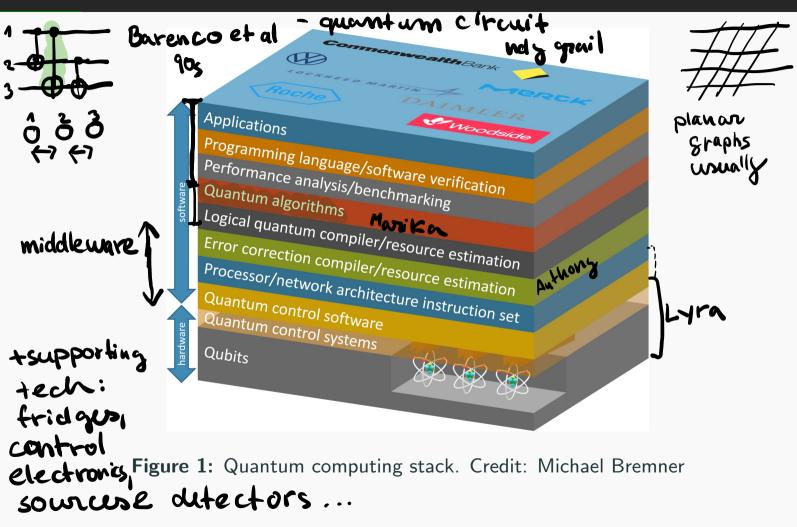
[progressbar=frametitle]beamerthememetropolis appendixnumberbeamer booktabs [scale=2]ccicons

pgfplots

xspace

amsmath,amssymb,amstext, latexsym hyphenat float colortbl [makeroom]cancel url pifont complexity qcircuit ulem amsfonts, bm caption lipsum subcaption amsfonts hyperref [english]babel mathdots algorithmicx,algorithm,algpseudocode

Methods in quantum computing


Mária Kieferová

August 26, 2022

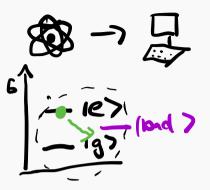
University of Technology Sydney

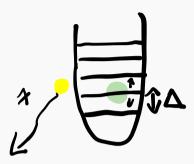
- 1. Quantum computing stack
- 2. DiVincenzo's criteria
- 3. Decoherence in a quantum system
- 4. Tomography
- 5. Selected physical architectures ion traps

The quantum computing stack

+ supporting technologies

Hardware level


DiVincenzo's criteria


A Davi cl

- 1. A scalable physical system with well-characterized qubit
- The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Note that all the requirements need to be satisfied simultaneously.

A scalable physical system with well-characterized qubit

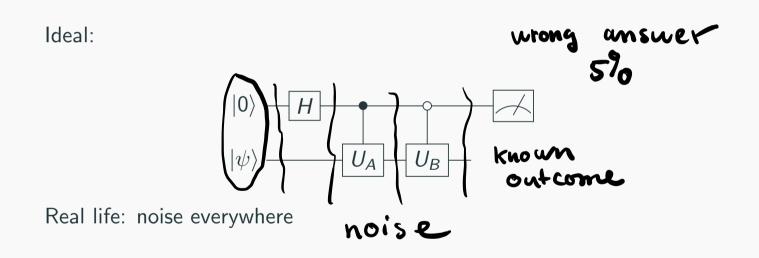
- an isolated 2-dimensional quantum state within a larger system
- always be able to increase the number of qubits in our computer
 instead of
- practical constraints: physical size of a chip
- 2 qubit quantum computer--electron spin 2 nuclear spin 3-qubit quantum computer?

The ability to initialize the state of the qubits to a simple fiducial state

10>

107

• The second requirement is to be able to initialize the initial state of How can a quantum computer. A typical state for use in many calculations is prepare [0...0] the state $|0...0\rangle$, which is a pure state. However, contact with the environment leads to decoherence, i.e. noise. A difficulty in some systems is initializing all the qubits very close to the state $|0...0\rangle$ without restoring to a measurement. In other systems, the sources that create states are probabilistic, and creating a state with multiple qubits is in practice difficult (for example photonics).


Long relevant decoherence times

A "universal" set of quantum gates

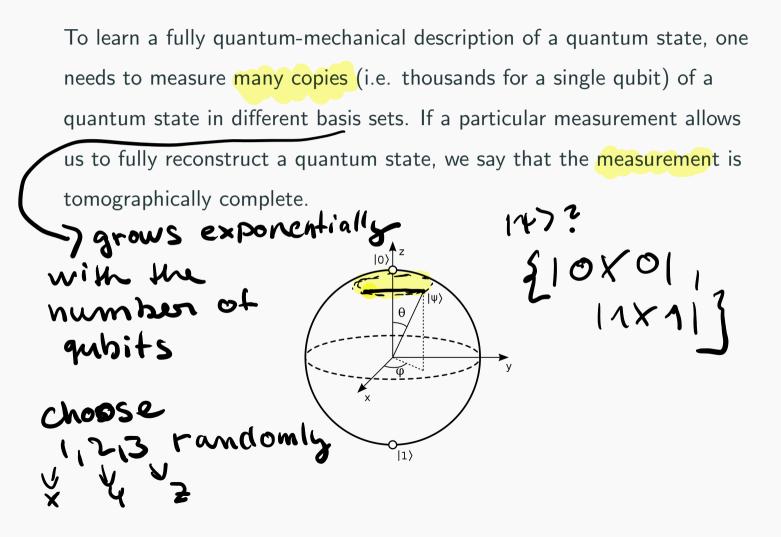
{H,T,CNOT] > H, Toff] {H, T, C-23 2H, T, NSWAR] I SWAP]

kotations along two different axis

A qubit-specific measurement capability

Decoherence

long can 147 live inside of a system. Kow Quantum states decay exponentially. Under the presence of noise, We identify two times, T1 and T2 that give typical time scales for stability of 11) is not stable qubits t>> T 117 -> plox01 + (1-p) 11×11 T1 measures how fast a qubit loses energy. Often, the state |0
angle is encoded to the ground state and |1
angle into an excited state (i.e. state with higher energy). T1 measures the exponential decay time for a qubit to relax from $|1\rangle$ to $|0\rangle$. dephasing T2 measures the stability of a phase of a qubit. Starting from a particular state on the "equator" of a Bloch sphere, for a time $t \ge T2$ the phase disappears and the mixed state will be along the z 17671-7 become indistignishable (vertical) axis. 107, 117 will stay the same.


Dephasing and depolarizing are two simple models. In practice, characterizing what is actually happening is much more difficult.

Quantum tomography

N(10×01) > 5:

What state did I obtain from after some unknown channel?

Tomography is the process of learning a (complete) description of a quantum state out of many copies and many measurements.

Exercise

A single qubit is fully characterized by a vector $\vec{r}, |r| \leq 1$ such that

$$\rho = \frac{1}{2}I + r_0\sigma_x + r_1\sigma_y + r_2\sigma_z.$$
(1)
= $\frac{1}{2}I + \vec{r}\cdot\vec{\sigma}$

Take a set of operators

$$M = \left\{ \frac{l+X}{6}, \frac{l-X}{6}, \frac{l+Y}{6}, \frac{l-Y}{6}, \frac{l+Z}{6}, \frac{l-Z}{6} \right\}.$$
 (2)
 M_{Λ} M_{Σ}

Show that

- M is a POVM (operators are positive and sum to identity). You don't have to work out positivity for all the elements of M.
- 2. M is tomographically complete, i.e. measuring enough times will allow us to learn the vector \vec{r} .

 $Tr\left(M_{S}\right) = Tr\left[\left(\frac{1}{6}\right)\left(\frac{1}{2} + \vec{P}\cdot\vec{\sigma}\right)\right]$ $= \frac{1}{6} \operatorname{Tr} \left[\frac{1}{2} + r \cdot r + \frac{1}{2} + \frac{1$ = $\frac{1}{1}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{2}$ TrDX]=TrDY] =Tr[2]= $=\frac{1}{6}+\frac{16}{3}=P_{1}$ $Tr(M_{a}r) = \frac{1}{6} - \frac{r_{o}}{3} = Pa$ I know how often -> (P1, P2), P3, P4, P5, P6 Fat each outcome.

$$V_{0} = \frac{3}{2} (P_{1} - P_{2})$$

$$V_{1} = \frac{3}{2} (P_{3} - P_{4})$$

$$V_{2} = \frac{3}{2} (P_{3} - P_{4})$$

$$V_{2} = \frac{3}{2} (P_{5} - P_{6})$$

 $P_1 - P_2 = \frac{2}{3}r_0$

Process tomography helps us to learn what operations we actually

Gate fidelity

Fidelity - how close we are from a desired state

(Average) gate fidelity - how far our gate took us from a desired state, average over all possible initial states.

In 2022, 99% fidelity for 2-qubit gates and 99.9% for single qubits gates are considered to be very good numbers.

Exercise: Suppose you have a 99% of percent of success when performing an operation. How many operations in sequence can you perform before the chance of successfully performing the sequence gets below 50%? You can assume that the errors are independent.

(0.99)ⁿ

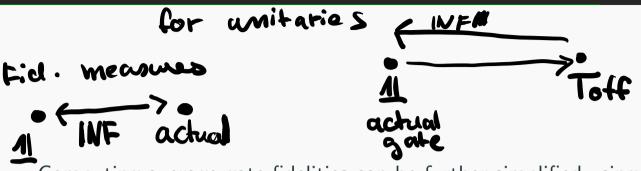
Gate fidelity

The average fidelity of a channel is defined with respect to the identity channel $\langle \forall \forall 1 \in I \lor \forall \rangle$

$$F(\mathcal{E}) = \int d\psi \langle \psi | \mathcal{E}(\psi) | \psi \rangle \qquad Fick if z between island outcome(3)$$

as an average over all state fidelities. To obtain the average, we must

integrate over all the quantum states in a given Hilbert space with equal


weightings and satisfy $\int d\psi = 1$.

randomized benchmarking t-clesings - prepere a set of states uniformly enoug distributed around the Bloch sphere 21

Exercise

E(14X41) $\mathcal{E}(\rho) = (1-p) |\psi\rangle \langle\psi| + p \frac{1}{d}.$ d=2 for a single qubit $\mathcal{I} = \int d\Psi \langle\Psi| \mathcal{E}(\Psi) |\Psi\rangle$ Compute the fidelity of a qubit depolarizing channel J faultz unitary U U===UEnoise C fide 1:13 between noise and 11 22

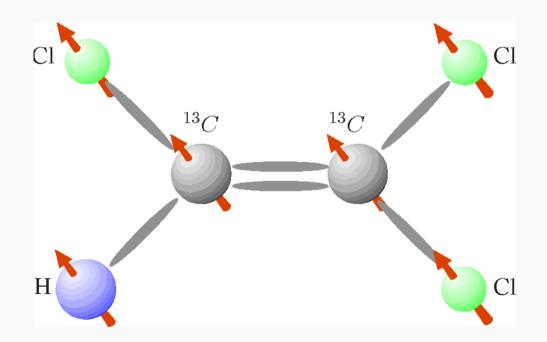
Gate fidelity forunitaries

Computing average gate fidelities can be further simplified using Nielsen's formula [?]. In a special case when the channel is unitary, we can compute its fidelity (with respect to the identity channel) as

Exercise

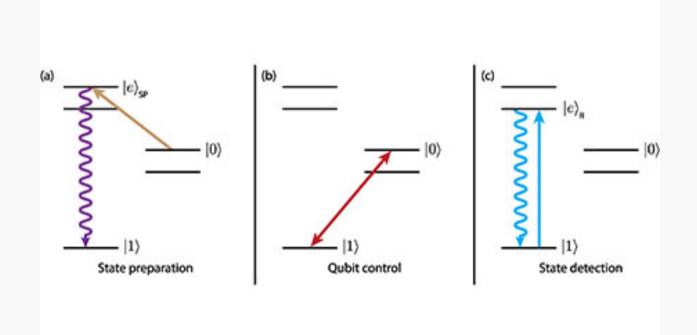
minor issue: their Toffoli gates are not working and they are simply

doing nothing (i.e. identity gates). What is the fidelity of their


"Toffoli" gate?


3-quisits, 8 dim

3. What if they replace all m-controlled-NOT gates with the identity?


qubits - physical particles or artificial (advanatges for both) must be a way to satisfy DiVincenzo's criteria

Hardware in 2022

lon trap qubits

- + ions create identical qubits (but the control is not uniform)
- + lowest gate errors out of all approaches very slow gates About 50 ions is the maximum for a trap without using individual control.
 Coupling different traps has not been very successful so far.