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1. Quantum computing stack

2. DiVincenzo's criteria

3. Decoherence in a quantum system
4. Tomography

5. Selected physical architectures - ion traps



The quantum computing stack
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Hardware level
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DiVincenzo’s criteria

1. A scalable physical system with well-characterized qubit

2. The ability to initialize the state of the qubits to a simple fiducial

state
3. Long relevant decoherence times
4. A "universal” set of quantum gates

5. A qubit-specific measurement capability

Note that all the requirements need to be satisfied simultaneously.



A scalable physical system with well-characterized qubit
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e an isolated 2-dimensional quantum state within a larger system

e always be able to increase the number of qubits in our computer
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e practical constraints: physical size of a chip
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The ability to initialize the state of the qubits to a simple fiducial

state
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Mow ® [he second requirement is to be able to initialize the initial state of
cawn

prepaL

l0...077 the state [0...0), which is a pure state. However, contact with the

a quantum computer. A typical state for use in many calculations is

environment leads to decoherence, i.e. noise. A difficulty in some

systems is initializing all the qubits very close to the state |0...0)
without restoring to a measurement. In other systems, the sources
that create states are probabilistic, and creating a state with

multiple qubits is in practice difficult (for example photonics).



Long relevant decoherence times




A "universal”’ set of quantum gates
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A qubit-specific measurement capability
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Quantum hardware
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Real life: noise everywhere
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Decoherence
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Quantum states decay exponentially. Under the presence of noise, We
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identify two times, T1 and T2 that give typical time scales for stability of

qubits 't>7 T;| 114) is hek stable
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e T1 measures how fast a qubit loses energy. Often, the state |0) is
encoded to the ground state and |1) into an excited state (i.e. state
with higher energy). T1 measures the exponential decay time for a
©€\ qubit to relax from |1) to |0). &LP'\“S‘ “?
e T2 measures the stability of a phase of a qubit. Starting from a
@é particular state on the "equator” of a Bloch sphere, for a time
t > T2 the phase disappears and the mixed state will be along the z
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Noise channels

Dephasing and depolarizing are two simple models. In practice,

characterizing what is actually happening is much more difficult.
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Quantum tomography
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What state did | obtain from after some unknown channel?

Tomography is the process of learning a (complete) description of a

quantum state out of many copies and many measurements.

14



Tomographically complete measurement

To learn a fully quantum-mechanical description of a quantum state, one
needs to measure many copies (i.e. thousands for a single qubit) of a
quantum state in different basis sets. If a particular measurement allows

"
us to fully reconstruct a quantum state, we say that the measurement is

tomographically complete.
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Exercise

A single qubit is fully characterized by a vector 7, |r| < 1 such that

1
p= EI + nnox + noy, + rno,. (1)

> =2
=34 + ¢
Take a set of operators

[+X I =X I+Y I-Y I+Z |-Z
M_{6’6’6’6"6’6}‘ (2)
A M,
Show that
Swmicthnile

1. M is a POVM (operators are positivé/and sum to identity). You
don't have to work out positivity for all the elements of M.

2. M is tomographically complete, i.e. measuring enough times will

allow us to learn the vector 7
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Process tomography helps us to learn what operations we actually

performed. 2 ‘e.
~ Wank to agply gare . |
2|0 =107 You. wWere o\pP‘bm?
2147 = \47\/ A we whele Hme.

lupud-

State dependent. @ "’J) ‘/\P7
AN

"
%“ \07 seems ke o~ QLIQ(ww(g on ¥

= \"\’7 '\&XWJ\{ Stodg_

18



Gate fidelity

Fidelity - how close we are from a desired state

(Average) gate fidelity - how far our gate took us from a desired state,

average over all possible initial states.
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Typical fidelities

In 2022, 99% fidelity for 2-qubit gates and 99.9% for single qubits gates

are considered to be very good numbers.

Exercise: Suppose you have a 99% of percent of success when performing
an operation. How many operations in sequence can you perform before
the chance of successfully performing the sequence gets below 50%7 You

can assume that the errors are independent.
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Gate fidelity
&

%e average fidelity of a channel is defined with respect to the identity

v
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as an average over all state fidelities. To obtain the average, we must
integrate over all the quantum states in a given Hilbert space with equal

weightings and satisfy [ di = 1.
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Exercise
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(Compute the fidelity of a qubit depolarizing channel
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Gate fidelity forunitaries
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Computing average gate fidelities can be further simplified using Nielsen's
formula [?]. In a special case when the channel is unitary, we can

compute its fidelity (with respect to the identity channel) as
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2. The hottest quantum startup promises to do quantum computing by
implementing Hadamard and Toffoli gates. However, they have a
minor issue: their Toffoli gates are not working and they are simply
doing nothing (i.e. identity gates). What is the fidelity of their

“Toffoli" gate? %-WA‘J)H‘S \ 8 O“m

3. What if they replace all m-controlled-NOT gates with the identity7
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Physical architectures

qubits - physical particles or artificial (advanatges for both)

must be a way to satisfy DiVincenzo's criteria
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Hardware in 2022
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lon trap qubits
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Strengths and limitations of ion traps

+ ions create identical qubits (but the control is not uniform)

+ lowest gate errors out of all approaches very slow gates About 50
ions is the maximum for a trap without using individual control.

Coupling different traps has not been very successful so far.
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