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Today

1. Quantum computing stack

2. DiVincenzo’s criteria

3. Decoherence in a quantum system

4. Tomography

5. Selected physical architectures - ion traps
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The quantum computing stack

Figure 1: Quantum computing stack. Credit: Michael Bremner
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Hardware level

What do we need to build a quantum computers?
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DiVincenzo’s criteria

1. A scalable physical system with well-characterized qubit

2. The ability to initialize the state of the qubits to a simple fiducial

state

3. Long relevant decoherence times

4. A ”universal” set of quantum gates

5. A qubit-specific measurement capability

Note that all the requirements need to be satisfied simultaneously.
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A scalable physical system with well-characterized qubit

• an isolated 2-dimensional quantum state within a larger system

• always be able to increase the number of qubits in our computer

• practical constraints: physical size of a chip
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The ability to initialize the state of the qubits to a simple fiducial

state

• The second requirement is to be able to initialize the initial state of

a quantum computer. A typical state for use in many calculations is

the state |0 . . . 0i, which is a pure state. However, contact with the

environment leads to decoherence, i.e. noise. A di�culty in some

systems is initializing all the qubits very close to the state |0 . . . 0i

without restoring to a measurement. In other systems, the sources

that create states are probabilistic, and creating a state with

multiple qubits is in practice di�cult (for example photonics).
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Long relevant decoherence times
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A ”universal” set of quantum gates
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A qubit-specific measurement capability
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Quantum hardware

Ideal:

|0i H •
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Real life: noise everywhere
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Decoherence

Quantum states decay exponentially. Under the presence of noise. We

identify two times, T1 and T2 that give typical time scales for stability of

qubits

• T1 measures how fast a qubit loses energy. Often, the state |0i is

encoded to the ground state and |1i into an excited state (i.e. state

with higher energy). T1 measures the exponential decay time for a

qubit to relax from |1i to |0i.

• T2 measures the stability of a phase of a qubit. Starting from a

particular state on the ”equator” of a Bloch sphere, for a time

t � T2 the phase disappears and the mixed state will be along the z

(vertical) axis.
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Noise channels

Dephasing and depolarizing are two simple models. In practice,

characterizing what is actually happening is much more di�cult.
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Quantum tomography

What state did I obtain from after some unknown channel?

Tomography is the process of learning a (complete) description of a

quantum state out of many copies and many measurements.
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Tomographically complete measurement

To learn a fully quantum-mechanical description of a quantum state, one

needs to measure many copies (i.e. thousands for a single qubit) of a

quantum state in di↵erent basis sets. If a particular measurement allows

us to fully reconstruct a quantum state, we say that the measurement is

tomographically complete.
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Exercise

A single qubit is fully characterized by a vector ~r , |r |  1 such that

⇢ =
1

2
I + r0�x + r1�y + r2�z . (1)

Take a set of operators

M =
n
I + X

6
,
I � X

6
,
I + Y

6
,
I � Y

6
, ,

I + Z

6
,
I � Z

6

o
. (2)

Show that

1. M is a POVM (operators are positive and sum to identity). You

don’t have to work out positivity for all the elements of M.

2. M is tomographically complete, i.e. measuring enough times will

allow us to learn the vector r .
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Noisy gates

Process tomography helps us to learn what operations we actually

performed.

State dependent.
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Gate fidelity

Fidelity - how close we are from a desired state

(Average) gate fidelity - how far our gate took us from a desired state,

average over all possible initial states.
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Typical fidelities

In 2022, 99% fidelity for 2-qubit gates and 99.9% for single qubits gates

are considered to be very good numbers.

Exercise: Suppose you have a 99% of percent of success when performing

an operation. How many operations in sequence can you perform before

the chance of successfully performing the sequence gets below 50%? You

can assume that the errors are independent.
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Gate fidelity

Rhe average fidelity of a channel is defined with respect to the identity

channel

F (E) =
Z

d h | E( ) | i (3)

as an average over all state fidelities. To obtain the average, we must

integrate over all the quantum states in a given Hilbert space with equal

weightings and satisfy
R
d = 1.
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Exercise

Compute the fidelity of a qubit depolarizing channel

E(⇢) = (1� p) | i h |+ p
I
d .
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Gate fidelity forunitaries

Computing average gate fidelities can be further simplified using Nielsen’s

formula [?]. In a special case when the channel is unitary, we can

compute its fidelity (with respect to the identity channel) as

F (U) =
d + |Tr(U)|2

d + d2
. (4)
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Exercise

1. Verify that F (I )=1 in (4).

2. The hottest quantum startup promises to do quantum computing by

implementing Hadamard and To↵oli gates. However, they have a

minor issue: their To↵oli gates are not working and they are simply

doing nothing (i.e. identity gates). What is the fidelity of their

“To↵oli” gate?

3. What if they replace all m-controlled-NOT gates with the identity?
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Physical architectures

qubits - physical particles or artificial (advanatges for both)

must be a way to satisfy DiVincenzo’s criteria
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Hardware in 2022
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Ion traps
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Ion trap qubits
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Strengths and limitations of ion traps

+ ions create identical qubits (but the control is not uniform)

+ lowest gate errors out of all approaches very slow gates About 50

ions is the maximum for a trap without using individual control.

Coupling di↵erent traps has not been very successful so far.
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