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Last lecture

Purity of a quantum state is defined as Tr[⇢2]. Unitary operations

preserve purity. We can use purity as an entanglement test. Take a pure

state ⇢A,B = | i h |

• If there is no entanglement between A and B both ⇢A = TrB⇢A,B

and ⇢B = TrA⇢A,B are pure states (⇢A,B was a product state).

• Otherwise ⇢A,B is entangled.

This test only works if the original state was pure.
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Today

1. No-cloning theorem

2. Measuring distance

3. Quantum channels

4. Noise channels

5. Measurement
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No cloning theorem

Theorem (No-Cloning theorem)

There is no unitary operation Ucopy on HA ⌦HB such that for all

| iA 2 HA and |0iB 2 HB

Ucopy(|�iA ⌦ |0iB) = e
if (�)

|�iA ⌦ |�iB (1)

for some number f (�) that depends on the initial state |�i.
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Exercise

Prove the no-cloning theorem by contradiction.

a Assuming Ucopy exists, take two states |�Ai and | i. Now apply

Ucopy on both of them and compute the resulting inner product

(h�|A ⌦ h0|B)U†
copyUcopy(| iA ⌦ |0iB).

b Explain how (a) leads to a contradiction.
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Distance measures

How do we measure the distance between quantum states or between

quantum operators?
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Metric (distance function)

A function d can be used a metric if it satisfies the following criteria:

• d(x , y) = 0 i↵ x = y

• d(x , y) = d(y , x)

• d(x , y)  d(x , z) + d(z , y)
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Example

Show that d(a, b) � 0
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Operator Norm

Distance of the operator from 0.

every norm k · k must satisfy the following conditions.

• kAk � 0 with equality if and only if A = 0.

• k↵Ak = |↵|kAk for any ↵ 2 C.

• Triangle inequality: kA+ Bk  kAk+ kBk.

8

t

Ha RE



The trace distance

The trace distance between two operators A and B is given by

kA� Bk1 := Tr |A� B |.
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Infidelity and fidelity

Infidelity = 1- fidelity

Infidelity is a metric, fidelity is not.

For ⇢,� 2 D(H), their fidelity is

F (⇢,�) :=

✓
Tr

q
p
⇢�

p
⇢

◆2

.

Sometime people use Tr
pp

⇢�
p
⇢ as a definition
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exercise: Fidelity on pure states

Simplify the expression for fidelity F (⇢,�) = (Tr
pp

⇢�
p
⇢)2 when

⇢ = | i h |.

Hint: Choose a base where ⇢ is diagonal. How does
p
| i h | look like?
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CPTP maps

Channels are the most general operation of quantum states. They must

be always map quantum states onto quantum states, even if if we apply

the channel only on a subset of qubits.

Any such channel can be written as

�(�) =
X

i

Bi�B
†
i where

X

i

BiB
†
i = 1. (2)
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Noise channels

• Depolarizing Channel:

N (⇢) = (1� p)⇢+ p⇡,

where ⇡ is the completely mixed state

• Dephasing Channel:

N (⇢) = (1� p)⇢+ pZ⇢Z .
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Exercise

A state ⇢ went through the depolarizing noise channel

N (⇢) = (1� p)⇢+ p⇡,

where ⇡ is the completely mixed state.

What is the fidelity between ⇢ and N (⇢)?
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Quantum measurement

Obtain classical information from a quantum state. It can destroy the

superposition property of a quantum state.

Observe this qubit in state |0i with probability |↵|2 and in state |1i with

probability |�|2. Furthermore, after the measurement, the qubit state |bi

will disappear and collapse to the observed state |0i or |1i.
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General quantum measurement

A collection of ⌥ := {Mi}, where each measurement operator

Mi 2 L(H) satisfies
X

i

Mi = I (3)

and each Mi is positive semi-definite operator. We call this

measurements positive operator-valued measure (POVM). The

probability of obtaining an outcome i on a quantum state ⇢ is

pi := Tr(Mi⇢). (4)

The state after measurement will be altered as

⇢i :=
Mi⇢

pi
.
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Projective measurement

Each Mi is a projector

pj := Tr (Pj |�ih�|)

and the resulting state
Pj |�i
p
pj

.
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Measuring observables

Measuring the observable H means that performing the projective

measurement ⌥ = {Pi} on a quantum state |�i. It follows that the

expected value of the outcomes if we measure the state |�i with

⌥ = {Pi} is

hHi :=
X

i

�i TrPi |�ih�| = h�|H|�i. (5)
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Expectation values

Suppose we measure the operator X on the state |0i.

What will the be outcomes of the measurement and what will be the

expectation value?
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