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1. Quantum physics

2. Selected physical architectures



Announcement

New problem set will be released this weekend. You will also get your the

first homework back and graded.



Physical architectures
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Hardware in 2022
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Quantized energy levels
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Figure 1: The simplest version of energy levels and spectrum of hydrogen.



Emission and absorption

The photon will have an energy corresponding to the difference between
the energy levels and we can also compute its frequency f and
wavelength A\ as

E _hc
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where E stands for energy, h is the Planck constant, and c is the speed

of light



Hamiltonian
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The allowed energies are then the eigenvalues E; of the Hamiltonian and

allowed states are their corresponding eigenvectors |;)
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Hamiltonian will also determine how the system evolves in time through

the (time-dependent) Schrodinger equation —1Ht
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Measurement
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Nuclear spin
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UNSW

Sydney (UNSW) is one of the world leaders in silicon qubits with
different groups pursuing either nuclear or electron spin and different
manufacturing techniques. While building spin qubits was proposed in
the 90s, manufacturing the first qubits and their interaction proved to be

challenging. Two qubit fidelities above 99% were demonstrated this year

by three different groups including UNSW.
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Strengths and limitations

+ some approaches have very good prospects for scalability
+ error rates below the threshold have been demonstrated
+ very fast gates (but perhaps too fast)

— building the first few qubits is incredibly challenging
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Strengths and limitations of ion traps

+ ions create identical qubits (but the control is not uniform)
+ lowest gate errors out of all approaches
— very slow gates

— About 50 ions is the maximum for a trap without using individual

control. Coupling different traps has not been very successful so far.
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Photonic qubits

Photons are elementary particles that can be used as qubits. Different
properties of a photon can be used for computation. One is to give the
photon two possible paths it can travel in and call one of their state |0)
and another |1). These states are known as modes. Another approach is

known as continuous variables quantum computation.
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Continuous variables quantum computation
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Figure 2: Quantum photonic on a chip. Source: Galan Moody 20



Linear optics elements

mirrors, phase shifters, beamsplitters
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Figure 3: Beamsplitter can split a beam of light into two. If the light consists
of a single photon, it will create a superposition across two different modes.

Credit University of Potsdam -



Quantum computing with linear optics
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Full quantum computation requires the addition of a nonlinearity.
Nonlinear materials exist but they are very lossy creating decoherence.
Another approach was proposed by Knill, Laflamme, and Milburn (KLM
protocol). This approach shows how to perform universal quantum
computation using only linear photonic, ancillae, and measurements.

Based on the outcome of the measurement, further gates are applied

adaptively. |@p
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Strengths and weaknesses

supencon ductors
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+ photons make " perfect” qubits

+ qubits don't need to be cooled (but still need low temperatures for

superconducting detectors)
+ low intrinsic decoherence
— lack of single photon sources
— many gates are probabilistic

— since photos travel at a speed of light, gates need to be perfectly

timed

— difficult error-correction
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Superconducting qubits

"artificial atoms”
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Superconductivity
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When a voltage U is applied to a regular conductor, a current starts /
flowing through the circuit that is proportional to the voltage and
inversely proportional to the resistance R of the circuit

=<, (5)

At very low temperatures (in the order of Kelvins, room temperature

300K), some materials become superconductors and have zero resistance.

One of the effects that can be observed|is that a current can flow

through a superconductor without any foltage applied.
D R=20
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Electrons and cooper pairs
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Cooper pairs observe different statistics that electrons and in the
superconductive regime, they can be all in the same quantum state. This
collective behavior leads to quantum mechanical effects that are

observable on a macroscopic scale.
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Josephson junctions
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Figure 4: Josepson junction is an essential circuit element of superconducting

qubits, source http://hyperphysics.phy-astr.gsu.edu/
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Figure 5: Josepson junction is an essential circuit element of superconducting

qubits, source http://hyperphysics.phy-astr.gsu.edu/
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Superconducting qubits
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-+ Error rates are relatively low

— The qubits must be kept at mK temperatures. This is possible but

requires a dilution refrigerator.

— The qubits are quite large, coupled with control electronic makes
building chips above 1000s of qubits too large for dilution

refrigerators
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Scaling up
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Error correction
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Fault tolerant quantum computers
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